TTI: 0-7038

Workshop Slides

Product 0-7038-P1

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS

sponsored by the Federal Highway Administration and the Texas Department of Transportation https://tti.tamu.edu/documents/0-7038-P1.zip

Bridge Weigh-in-Motion -An Approach to Measure Truck Loading on Texas Highways

Workshop October 26, 2022

TTI Research Team: **Matthew Yarnold (PS)** Stefan Hurlebaus John Mander Dan Middleton Lubinda F. Walubita Shengyi Shi Claire Barden

John Mander Professor jmander@civil.tamu.edu 979-862-8078 (office)

Stefan Hurlebaus Professor shurlebaus@civil.tamu.edu 979-845-9570 (office)

Dan Middleton Senior Research Engineer D-Middleton@tti.tamu.edu 979-317-2826 (office)

Lubinda Walubita Research Scientist L-Walubita@tti.tamu.edu 979-317-2301 (office)

Shengyi Shi Student <u>shishengyi@tamu.edu</u>

Claire Barden Student <u>claire_barden@tamu.edu</u>

Research Team

Bridge Weigh-in-Motion (BWIM) Workshop

9:00 AM - <u>Session 1</u>: BWIM Introduction

- 10:00 AM <u>Session 2</u>: BWIM case studies Truck characterization
- 11:00 AM Session 3: BWIM case studies Bridge Evaluation
- 11:40 AM Workshop Summary

SESSION 1: BWIM INTRODUCTION

Session 1: BWIM Introduction

- 1. Definition & Objectives
- 2. Background
- 3. Components of BWIM
- 4. TxDOT Study

DEFINITION & OBJECTIVES

Definition

A BWIM system utilizes <u>physical measurements</u> (e.g., strain) to characterize <u>truck traffic</u> and potentially evaluate the <u>bridge itself</u>.

Objectives

- 1. Characterize <u>truck traffic</u> in a corridor
 - axles (number and spacing)
 - speeds
 - weights (axles and gross)
 - classifications
- 2. Evaluate the <u>bridge</u> itself
 - distribution factors
 - percent composite action
 - dynamic impact factor
 - site-specific load ratings

BWIM Illustration

BWIM Illustration

Lane Detection	Outside Lane	0.5	Distri	bution F	actors
Number of Axles	5	0.4 -		<u> </u>	_
Average Speed (mph)	70.2	. 0.35 -			
Axle Spacing (ft)	20.6, 4.7, 34.2, 4.5	- Tributio			
GVW (kips)	81 Proc	essing			_
Axle Weight (Kips)	15.3, 17.4, 18.2, 15.7, 14.3	0			-
Classification	Class 9	ر ورا ا	2	3 4	5 6
				Beam #	
				Inventory	Operating
		LC	bad Rating	2.24	3.74

BACKGROUND

Weigh-in-Motion (WIM) Systems

1. Permanent Pavement WIM

2. Portable Pavement WIM

3. BWIM

Permanent Pavement WIM

Main types:

- Bending plate
- Load cell
- Piezoelectric

Active Permanent WIM station (as of July 2020)

Portable Pavement WIM

COMPONENTS OF BWIM

Slide 15

BWIM System

Axle Detection

Strain Gauge

Imaging

Weighing

Slide 17

TxDOT STUDY

Scope of Work

- 1. Literature review
- Preliminary study on a full-scale bridge not in-service
- Three case studies on in-service TxDOT bridges
- 4. Development of guidelines and recommendations

Test Information

Speed:	10 / 20 / 30 / 40 / 50 mph		
Direction:	South→North, North→South		
Single Vehicle:	72 runs		
Back to Back	6 runs		
Side by Side	5 runs		
Opposite Direction	4 runs		

TxDOT In-Service Bridges

Primary Process

Session 2

- A. Instrumentation design
- B. System installation
- C. Data acquisition & Communication
- D. Calibration test
- E. Data processing
- F. Validation study
- G. Bridge assessment \longrightarrow Session 3

Slide 26

B. System Installation

Bridge #1

B. System Installation

Bridge #1

C. Data Acquisition & Communication

D. Calibration Test

Bridge #1

D. Calibration Test

E. Data Processing

F. Validation Study

G. Bridge Evaluation

Site-Specific Load Ratings:

- LFR code for prestressed concrete beam and steel girder bridges
- Validated code using TxDOT Load Rating
 Spreadsheet
- BWIM data processed to identify:
 - Distribution factors
 - Composite behavior
- Calculate load ratings for:
 - Notional trucks
 - Actual trucks

Session 1: BWIM Introduction

- 1. Definition & Objectives
- 2. Background
- 3. Components of BWIM
- 4. TxDOT Study

SESSION 2: BWIM CASE STUDIES TRUCK CHARACTERIZATION

Session 2: BWIM Case Studies-Truck Characterization

- 1. Data Processing
- 2. Validation Study

Primary Process

Session 2

- A. Instrumentation design
- B. System installation
- C. Data acquisition & Communication
- D. Calibration test
- E. Data processing
- F. Validation study

G. Bridge assessment

DATA PROCESSING

Slide 41

Lane Detection

Axle Detection

- Objective to identify precise axle times at specific locations, which provides:
 - Number of axles
 - Vehicle speed
 - Axle spacing
- Methods:
 - 1. Deck strain gauges (1/4 span)
 - 2. Beam vertical strain gauges near the bearings
 - 3. LVDTs measuring vertical bearing deformation

<u>Axle Detection – Number of Axles</u>

<u>Axle Detection - Number of Axles (Second Derivative)</u>

Axle Detection - Spacing

Example – Measuring axle spacings of a test vehicle

- <u>GVW Area Method</u> shown
- Midspan strain gauges

$$GVW_u = A_u \frac{GVW_c}{A_c} \frac{v_u}{v_c}$$

Axle Weights

- Calibrate the GVW by area method
- Axle weights are calculated by distribute the GVW according to peak values in second derivative data

Classification

- Number of axles
- Spacing of axles
- Gross Vehicle Weight

<u>Side-by-Side Detection and</u> <u>GVW Calculation</u>

- Identified using distribution factors
- GVW calculated using the distribution factors with the Area Method

Slide 60

Bridge #1

Q4

Slide 61

Sample Results

Bridge #2

Sample Results

Sample Results

Sample Results

Sample Results

Sample Results

Sample Results

VALIDATION STUDY

Validation Study

Bridge #1

Validation Study

BWIM vs Portable Pavement WIM

Validation Study

<u>BWIM vs Portable Pavement WIM</u>

System	GVW (kips)		Average Speed (mph)		Number of Axles		Wheelbase (ft)		Front Axle (Kips)	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
B-WIM	59.2	25.6	69.8	4.3	4.5	1.0	54.4	24.6	13.4	3.3
P-WIM	57.9	23.7	70.8	4.5	4.5	1.0	51.2	14.7	10.4	2.6
Percentage Difference	2.2%		1.4%		1.1%		5.8%		22.3%	

Bridge #2

Validation Study

BWIM vs Portable Pavement WIM

Validation Study

BWIM vs Portable Pavement WIM

System	GVW (kips)		Average Speed (mph)		Number of Axles		Wheelbase (ft)		Front Axle (kips)	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
B-WIM	63.4	21.0	66.8	4.6	4.7	0.9	53.6	13.5	9.9	2.9
p-WIM	58.5	24.7	69.7	4.4	4.6	0.9	51.4	13.9	10.1	3.3
Percentage Difference	7.7%		4.2%		2.1%		4.1%		1.9%	

Session 2: BWIM Case Studies-Truck Characterization

- 1. Data Processing
- 2. Validation Study

SESSION 3: BWIM CASE STUDIES BRIDGE EVALUATION

Session 3: BWIM Case Studies-Bridge Evaluation

- 1. Bridge #1 SH6 over Navasota River (Prestressed Concrete)
- 2. Bridge #3 IH35 over Spring Creek Relief (Steel)

Primary Process

- A. Instrumentation design
- B. System installation
- C. Data acquisition & Communication
- D. Calibration test
- E. Data processing
- F. Validation study

G. Bridge assessment \longrightarrow Session 3

Site-Specific Load Ratings:

- LFR (Load Factor Ratings)
- Line girder analysis
- Field determined:
 - Distribution factors
 - Composite action
- Rating trucks:
 - Notional
 - Actual

Slide 81

Bridge #1

Distribution Factors - Single Lane Loaded

Bridge #1

Distribution Factors - Single Lane Loaded

Bridge #1

Distribution Factors - Two Lanes Loaded

Distribution Factors - Two Lanes Loaded

Output Load Ratings:

Inventory

Operating

Truck	Without B-WIM	B-WIM with refined DF		Truck	Without B-WIM	B-WIM with refined DF
HS20	1.34	(_1.60)		HS20	2.24	2.68
H20	1.87	2.23	\ 20%	H20	3.12	3.74
SU4	1.64	1.93	increase	SU4	2.75	3.23
SU5	1.48	1.74		SU5	2.49	2.92
SU6	1.33	1.57		SU6	2.23	2.62
SU7	1.22	1.44		SU7	2.05	2.41
				EV2	2.68	3.15
				EV3	1.76	2.07

622223

erfina

C=:!!:3

cr.ilean

e:they

-

5

Composite Action

Load Ratings (Operating) – Notional Trucks

Truck	Without B-WIM	B-WIM with refined DF	
HS20	1.22	(1.83)	
H20	1.69	2.54	\ 50%
SU4	1.39	2.08	increase
SU5	1.28	1.92	
SU6	1.15	1.73	
SU7	1.07	1.61	
EV2	1.37	2.05	
EV3	0.90	1.35	

Load Ratings – Actual Trucks (with refined DFs)

Bridge #3

Session 3: BWIM Case Studies-Bridge Evaluation

- 1. Bridge #1 SH6 over Navasota River (Prestressed Concrete)
- 2. Bridge #3 IH35 over Spring Creek Relief (Steel)

WORKSHOP SUMMARY

Takeaways

- 1. Algorithms and Sensors
- 2. Bridge selection criteria
- 3. Accuracies
- 4. Comparison ofBWIM to otherWIM systems
- 5. Potential BWIM applications

lexas A&M

Algorithms and Sensors

Axle Detection:

- Sample 500 Hz
- Second derivative method with peak picking
- Weight Calculation:
- Area method for GVW
- Axle weights from second derivative distribution

Bridge Selection Criteria

Selection Criteria	Recommendation		
Bridge Type	Straight spread multi-girder bridges (no skew)		
Span Type	Simple span		
Length	30 to 80 ft (can go up to 125 ft if needed)		
Traffic Direction	One-way with minimal lanes		
Traffic Speed	Greater than 15 mph		
Pavement Roughness	Even and smooth		
Underside Access	Favorable		

Accuracies

Truck Information	Qualitative Accuracies	Validation Study Results (Percent Differences)
Axles (number and spacing)	High	1% - 6%
Speed	High	1% - 4%
Axle weight	Moderate	2% - 23%
Gross weight	High	2% - 13%
Classification	High	<5%

Comparison of BWIM to other WIM Systems

- High accuracy
- Consistent weight measurements
- Many commercial systems

- High accuracy
- Consistent weight measurements
- Portable/cost-effective

- High accuracy (axle detection and GVW)
- Durable/cost-effective
- Reusable
- Bridge evaluation

- High installation cost
 - High maintenance
 - Limited to certain highways

- Dynamic effects can influence results
- Less durable

- Lower axle weight accuracy
- Limited expertise
- Only measures trucks (Class 4-13)

Challenges

Potential BWIM Applications

- Prescreening for weigh stations
- Weight enforcement
- Bridge evaluation
 Bridges without plans
 - Change in loading
- Corridor where truck information is needed
 - Traffic planning
 - Pavement assessment

Thank you to TxDOT!

- Martin Dassi
- Bernie Carrasco
- Biniam Aregawi
- David Fish
- David Freidenfeld
- Drake Builta
- Mark Wallace
- Yi Qiu

Bridge Weigh-in-Motion - An Approach to Measure Truck Loading on Texas Highways

<u>TxDOT – 0-7038</u>

Contact: Matthew Yarnold, Ph.D., P.E. Email: <u>myarnold@tamu.edu</u> Cell: 484-547-1500

